Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.
نویسندگان
چکیده
Mitochondrial dysfunction is a potential causal factor in Parkinson's disease. We show here that acute exposure to the mitochondrial complex I inhibitor rotenone (30-100 nM; 30 min) causes concentration-dependent suppression of single-pulse evoked dopamine (DA) release monitored in real time with carbon-fiber microelectrodes in guinea pig striatal slices, with no effect on DA content. Suppression of DA release was prevented by the sulfonylurea glibenclamide, implicating ATP-sensitive K+ (KATP) channels; however, tissue ATP was unaltered. Because KATP channels can be activated by hydrogen peroxide (H2O2), as well as by low ATP, we examined the involvement of rotenone-enhanced H2O2 generation. Confirming an essential role for H2O2, the inhibition of DA release by rotenone was prevented by catalase, a peroxide-scavenging enzyme. Striatal H2O2 generation during rotenone exposure was examined in individual medium spiny neurons using fluorescence imaging with dichlorofluorescein (DCF). An increase in intracellular H2O2 levels followed a similar time course to that of DA release suppression and was accompanied by cell membrane depolarization, decreased input resistance, and increased excitability. Extracellular catalase markedly attenuated the increase in DCF fluorescence and prevented rotenone-induced effects on membrane properties; membrane changes were also largely prevented by flufenamic acid, a blocker of transient receptor potential (TRP) channels. Thus, partial mitochondrial inhibition can cause functional DA denervation via H2O2 and KATP channels, without DA or ATP depletion. Furthermore, amplified H2O2 levels and TRP channel activation in striatal spiny neurons indicate potential sources of damage in these cells. Overall, these novel factors could contribute to parkinsonian motor deficits and neuronal degeneration caused by mitochondrial dysfunction.
منابع مشابه
AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release.
Dopamine-glutamate interactions in the striatum are critical for normal basal ganglia-mediated control of movement. Although regulation of glutamatergic transmission by dopamine is increasingly well understood, regulation of dopaminergic transmission by glutamate remains uncertain given the apparent absence of ionotropic glutamate receptors on dopaminergic axons in dorsal striatum. Indirect evi...
متن کاملTonic enhancement of endocannabinoid-mediated retrograde suppression of inhibition by cholinergic interneuron activity in the striatum.
Tonically active cholinergic interneurons in the striatum modulate activities of striatal outputs from medium spiny (MS) neurons and significantly influence overall functions of the basal ganglia. Cellular mechanisms of this modulation are not fully understood. Here we show that ambient acetylcholine (ACh) derived from tonically active cholinergic interneurons constitutively upregulates depolar...
متن کاملCortical regulation of striatal medium spiny neuron dendritic remodeling in parkinsonism: modulation of glutamate release reverses dopamine depletion-induced dendritic spine loss.
Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culm...
متن کاملLoss of Striatonigral GABAergic Presynaptic Inhibition Enables Motor Sensitization in Parkinsonian Mice
Degeneration of dopamine (DA) neurons in Parkinson's disease (PD) causes hypokinesia, but DA replacement therapy can elicit exaggerated voluntary and involuntary behaviors that have been attributed to enhanced DA receptor sensitivity in striatal projection neurons. Here we reveal that in hemiparkinsonian mice, striatal D1 receptor-expressing medium spiny neurons (MSNs) directly projecting to th...
متن کاملAMPA receptor - dependent H 2 O 2 generation in striatal spiny neurons , but not dopamine axons : one source of a retrograde signal that can inhibit dopamine release
Dopamine-glutamate interactions in the striatum are critical for normal basal ganglia-mediated control of movement. Although regulation of glutamatergic transmission by dopamine is increasingly well understood, regulation of dopaminergic transmission by glutamate remains uncertain, given the apparent absence of ionotropic glutamate receptors on dopaminergic axons in dorsal striatum. Indirect ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 43 شماره
صفحات -
تاریخ انتشار 2005